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Abstract
Main conclusion  The study performed genome-wide identification, characterization and evolution analysis of gene 
clusters for phytoalexin terpenoid biosynthesis in tobacco, and specifically illustrated ones for capsidiol, an efficient 
defensive specialized metabolite.

Abstract  Terpenoid phytoalexins play an important role in plant self-defense against pest and pathogen attack. Terpenoid 
biosynthesis involves terpene synthase and cytochrome P450, which always locate and function as cluster(s). In this study, 
we performed genome-wide investigation of metabolic gene clusters involved in terpenoid production in tobacco (Nicotiana 
tabacum). Due to the complexity of the tobacco genome, we modified a published prediction pipeline to reduce the influence 
of the large number of repeats and to improve the annotation of tobacco genes with respect to their metabolic functions. 
We identified 1181 metabolic gene clusters with 34 of them potentially being involved in terpenoid biosynthesis. Through 
integration with transcriptome and metabolic pathway annotation analyses, 3 of the 34 terpenoid biosynthesis-related gene 
clusters were determined to be high-confidence ones, with 2 involved in biosynthesis of capsidiol, a terpenoid recognized 
as 1 of the effective resistance compounds in the Nicotiana species. The capsidiol-related gene cluster was conserved in 
N. sylvestris, N. tomentosiformis and N. attenuate. Our findings demonstrate that phytoalexins in tobacco can arise from 
operon-like gene clusters, a genomic pattern characterized as being beneficial for rapid stress response, gene co-regulation, 
co-function and co-heredity.

Keywords  Capsidiol · Cytochrome P450 · Genome-wide identification · Nicotiana tabacum · Terpene synthase · 
Transcriptome

Abbreviations
CYP	� Cytochrome P450
EAH	� 5-Epi-aristolochene dihydroxylase
EAS	� 5-Epi-aristolochene synthase
MGC	� Metabolic gene cluster
TPS	� Terpene synthase

Introduction

Plant damage caused by pests and pathogen attacks signifi-
cantly limit worldwide agricultural production. Phytoalexins 
induced by a pathogen are synthesized de novo and rapidly 
accumulated and transported, and are an important part of 
the plant defense repertoire (Ahuja et al. 2012). To date, 32 
classes of pathways involved in biosynthesis of phytoalex-
ins have been documented in the plant metabolic network 
(Zhang et al. 2010). Of these pathways, terpenoid-related 
pathways are predominant. Diterpenoids, such as the phyto-
alexins phytocassane, oryzalexin, and momilactone, in rice 
(Oryza sativa) exhibit direct anti-fungal activity against the 
pathogen Magnaporthe grisea, which causes rice leaf blast 
disease (Peters 2006; Shimura et al. 2007). Momilactone 
A also contributes to anti-herbivore activity against Soga-
tella furcifera in rice (Kanno et al. 2012). Sesquiterpenoid 
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phytoalexins such as zealexin in maize (Zea mays), rishitin 
in the Solanum species, capsidiol in Nicotiana and the Cap-
sicum species are important inducible defensive compounds 
(Huffaker et al. 2011). The biosynthesis of terpenoids mostly 
involves two classes of enzymes, terpene synthase (TPS) and 
cytochrome P450 (CYP). Studies have revealed that genes 
encoding TPS and CYP are inclined to locate and function 
as so-called metabolic gene clusters (MGCs) (Field and 
Osbourn 2008; Matsuba et al. 2013; Boutanaev et al. 2015). 
For example, in rice, the momilactone A biosynthesis path-
way includes TPS-coding genes CPS4 and KSL4, and CYP-
coding genes CYP99A2 and CYP99A3. These four gene clus-
ters are within a genomic region of ~ 180 kb on chromosome 
4 (Shimura et al. 2007). The core genes, including CPS2, 
KSL5, KSL6, KSL7 (for TPS) and CYP71Z6, CYP71Z7, 
CYP76M7, CYP76M8 (for CYP), involved in biosynthesis 
of phytocassane/oryzalides form a cluster within a ~ 250-
kb genomic region on chromosome 2 (Swaminathan et al. 
2009). On the other hand, it was also reported that gene clus-
ters were often formed by pairing between genes encoding 
TPS and CYP (Boutanaev et al. 2015).

The most salient feature of the genuine MGCs is the 
existence of genes that encode signature enzymes that 
synthesize the scaffold of the specialized metabolites and 
tailoring enzymes that modify the scaffold in its various 
chemical groups to form the end-product (Boycheva et al. 
2014). Hallmark signature enzymes include terpene syn-
thases (TPS), phenylpropanoid signature enzymes (PSE), 
alkaloid signature enzymes (ASE) and polyketide synthases 
(PKS). Tailoring enzymes include cytochrome P450 (P450), 
2-oxoglutarate-dependent dioxygenases (2ODD) and meth-
yltransferase, acyltransferase, and glycosyltransferase. Genes 
encoding these enzymes arranged in the co-occurrence 
model greatly contribute to rapid stress response, gene co-
regulation, co-function and co-heredity, in a manner similar 
to the operon in prokaryotic genomes (Boycheva et al. 2014). 
Identification of the functional MGCs in crops will dramati-
cally improve the efficiency of genome editing for improving 
economical traits.

To uncover the most reliable MGCs from plant genomes, 
two state-of-the-art in silico approaches have recently been 
developed. One is the web-based tool plantiSMASH (http://
plant​ismas​h.secon​darym​etabo​lites​.org) (Kautsar et al. 2017), 
and the other is the algorithm published by the Schlapfer 
group for gene cluster identification (Schlapfer et al. 2017). 
The plantiSMASH pipeline employs a comprehensive 
library of profile Hidden Markov models (pHMMs), includ-
ing 62 enzyme families known to be involved in plant bio-
synthetic pathways, and the CD-HIT clustering algorithm 
for gene cluster prediction. PlantiSMASH has been used to 
identify 2007 MGCs from more than 47 plant genomes, and 
380 of these MGCs were related to terpene synthesis. Plan-
tiSMASH is built on a flexible and user-friendly platform, 

and compatible with multiple input file formats. However, 
plantiSMASH only provides the core domains of the MGC 
genes, and is constrained by the 62 enzyme families, which 
largely limits its mining power for gene clusters. Schlap-
fer et al. (2017) presented a more comprehensive compu-
tational pipeline for MGC prediction, including identifica-
tion of metabolic enzymes (a machine learning-based tool, 
E2P2), pathways (the Pathway Tools), and gene clusters 
(PlantClusterFinder), to generate a much larger number of 
enzyme entries and provide more information for the anno-
tated genes. Schlapfer’s group has detected 11,969 gene 
clusters from 18 plant species. Distinct from plantiSMASH 
which employed HMMER for PFAM domain identifica-
tion, PlantClusterFinder relies on the organism-specific 
Pathway/Genome Databases (PGDBs) for MGC identifica-
tion and annotation, which integrates abundant metabolism 
resources. However, the plentiful metabolism resources 
increase prediction sensitivity at the cost of false positives.

Tobacco (Nicotiana tabacum) produces thousands of 
specialized metabolites and some, especially terpenoids, 
are used as phytoalexins (Jassbi et al. 2017). For exam-
ple, diterpene alcohols (30 isolated) and glycosides (14 
isolated) play an important defensive role against aphids 
(Jassbi et al. 2017). To date, more than 29 monoterpenoids 
and 85 sesquiterpenoids have been reported in tobacco 
as phytoalexins or feeding deterrents against pathogens 
or herbivores (Jassbi et al. 2017). Capsidiol (C15H24O2, 
236.35 Da), one of the sesquiterpenoid phytoalexins, 
was first isolated from TMV (Tobacco Mosaic Virus)-
infected leaves of N. tabacum and exhibited antifungal 
activity against Cladosporium cucumerinum, Phytoph-
thora infestans, and Potato virus X (Bailey et al. 1975; 
Matsukawa et al. 2013; Li et al. 2015). Capsidiol synthe-
sis requires two enzymes: 5-epi-aristolochene synthase 
(EAS) and 5-epi-aristolochene dihydroxylase (EAH), and 
three reaction steps (Fig. 1) (Starks et al. 1997; Ralston 
et al. 2001). EAS is a kind of TPS that catalyzes farnesyl 
diphosphate (FPP) to 5-epi-aristolochene, while EAH also 
termed CYP71D20 is one member of the CYP450 clan 71, 
and responsible for the conversion of 5-epi-aristolochene 
to its dihydroxylated form, capsidiol (Fig. 1). Lee et al. 
(2017) proved the presence of two gene clusters for cap-
sidiol biosynthesis in pepper and claimed that capsidiol 
enhanced resistance to non-adapted pathogen P. infestans, 
which causes potato late blight disease (Lee et al. 2017). 
The association of terpene-derived phytoalexins and MGC 
in tobacco has not been revealed due to the complexity of 
the tobacco genome. Fortunately, the tobacco genome has 
been updated recently (Edwards et al. 2017). Sierro et al. 
(2014) presented the first tobacco genome (cultivar K326) 
with a ~ 3.7-Gb assembled sequence (Sierro et al. 2014). 
Edwards et al. (2017) improved the assembly by increas-
ing the assembly to ~ 4.5 Gb with the scaffolds organized 

http://plantismash.secondarymetabolites.org
http://plantismash.secondarymetabolites.org
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into 24 pseudomolecules. Even though the allotetraploid 
N. tabacum (2n = 4x = 48) stands out due to its big genome 
and significant proportion (~ 70%) of repeats, the avail-
ability of a large amount of the genome resource and the 
improved genome assembly encouraged us to mine MGCs 
in tobacco.

To comprehensively and credibly investigate high-con-
fidence MGCs involved in metabolic pathways in tobacco, 
we first performed MGC prediction with a workflow modi-
fied from PlantClusterFinder and then re-detected by plan-
tiSMASH. Overall, 1181 putative MGCs were predicted 
with 34 of them potentially involved in terpenoid biosyn-
thesis. Three MGCs were found to be involved in biosyn-
thesis of capsidiol. According to transcriptome analysis, 
the core gene pairs EAS–EAH in MGCs involved in capsid-
iol biosynthesis showed a highly significant co-expression 
pattern. Collinearity analysis showed the co-occurrence of 
the capsidiol biosynthesis MGCs in tobacco’s ancestors, N. 
sylvestris and N. tomentosiformis. The MGCs identified in 
this study provide a possibility and a novel perspective to 
functionally investigate the clustered metabolic pathway 

involved in biosynthesis of terpene-derived phytoalexins 
in tobacco.

Materials and methods

Genomic and annotation data

The genomes and the annotation files used in this study 
were downloaded from Sol Genomics Network (SGN, https​
://solge​nomic​s.net/), including genome sequences of N. 
tabacum cultivar K326 (Edwards et al. 2017), N. tabacum 
cultivar TN90 (Sierro et al. 2014), N. tabacum cultivar BX 
(Sierro et al. 2014), N. sylvestris (Sierro et al. 2013), and N. 
tomentosiformis (Sierro et al. 2013), genome release v2 and 
annotation v5 of N. attenuata (Xu et al. 2017), and genome 
and annotation release v1.55 of Capsicum annuum cultivar 
CM334 (Kim et al. 2014).

Identification of putative enzymes was performed by 
E2P2 v3.0, downloaded from https​://dpb.carne​giesc​ience​
.edu/labs/rhee-lab/softw​are (Schlapfer et al. 2017). The 

Fig. 1   Diagram of the capsidiol 
biosynthetic pathway (PWY-
2921, MetaCyc). Two enzymes 
(5-epi-aristolochene synthase 
or EAS and 5-epi-aristolochene 
dihydroxylase or EAH) and 
three steps of reactions are 
responsible for capsidiol 
biosynthesis. EAS catalyzes 
FPP to 5-epi-aristolochene, 
EAH then hydroxylases 5-epi-
aristolochene at C-1 or C-3 
to form capsidiol by two-step 
hydroxylation (+)-5-epi-aristolochene

(2E,6E)-Farnesyl diphosphate

3-deoxy-capsidiol 1-deoxy-capsidiol

Capsidiol

EAS
5-epi-aristolochene synthase

EAH
5-epi-aristolochene dihydroxylase

EAH
5-epi-aristolochene dihydroxylase

EAH
5-epi-aristolochene dihydroxylase

EAH
5-epi-aristolochene dihydroxylase

https://solgenomics.net/
https://solgenomics.net/
https://dpb.carnegiescience.edu/labs/rhee-lab/software
https://dpb.carnegiescience.edu/labs/rhee-lab/software
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annotated protein sequences were used as the input file. The 
outputs (in .pf format) included the protein ID and the cor-
responding enzyme category which was classified according 
to the predicted catalytic functions (Chae et al. 2014).

RNA‑seq data

Two sets of RNA-seq data were used in this study. One was 
downloaded from NCBI and generated from a long day diur-
nal time-course treatment experiment project including three 
tissues (root, shoot and shoot apex) (SRP101432; Supple-
mentary Table S1). The other one was from an unpublished 
pathogen infection experiment done by Yunnan Academy of 
Tobacco Agricultural Sciences. In this experiment, RNAs 
from two tissues (root and shoot) were sequenced. Raw reads 
were first filtered to keep clean data using NGSQC toolkit 
v2.3.3 with the default settings (Patel and Jain 2012). The 
clean reads were then aligned to the K326 genome assembly 
using HISAT v2.1.0 (Pertea et al. 2016). After alignment, 
the number of reads mapped to each predicted transcript 
in each sample was counted and normalized to fragments 
per kilo base of exon per million fragments (FPKM) using 
StringTie v1.3.4d (Pertea et al. 2016).

Metabolic gene cluster prediction and classification

Prediction of MGCs was performed by a modified method 
(Fig. 2) based on Schlapfer et al. (2017). Briefly, the E2P2 
output file was used as input of Pathway Tools, a state-
of-the-art software for specie-specific metabolic pathway 
database construction. Taxonomic range-based (NCBI-
TAXON-ID 4097) pathway inference and pathway data-
base construction were performed by the Pathway Tools’ 
PathoLogic software with the default setting (Karpe et al. 
2011), we used the annotation information of the constructed 
database straightly without validation with the SAVI pipe-
line to keep as much details as possible for later selection. 
The generated database library files were then exported for 
later “co-pathway” filtering.

The shell-based software PlantClusterFinder v1.0 (https​://
dpb.carne​giesc​ience​.edu/labs/rhee-lab/softw​are) (Schlapfer 
et al. 2017), which was based on sliding window search-
ing, was applied to identify groups of metabolic genes that 
are contiguously located on the same scaffold. The default 
parameters were used in running the software except the 
“Gap Size End”, for which we used 10 that was estimated 
based on the genome feature of tobacco. “Gap Size End” was 
used to define the maximal number of non-metabolic genes 
allowed between two genes encoding metabolic enzymes in 
MGC searching.

MGCs were classified into four subdomains, i.e., terpe-
noids, phenylpropanoids, alkaloids, and polyketides, based 
on the metabolites they produce or metabolize. An enzyme 

library of these metabolites was used in the identifica-
tion pipeline. In addition, we also included cytochrome 
P450, 2-oxoglutarate-dependent dioxygenases and meth-
yltransferase, acyltransferase and glycosyltransferase in 
the library.

High‑confidence metabolic gene cluster 
identification

To acquire a set of high-confidence MGCs among the vast 
candidates, two kinds of stringent filters were applied. (1) 
Co-pathway: based on the library file of the metabolic path-
way database. We defined co-pathway MGC criteria as: 
(a) at least two genes within a MGC cluster with a same 
pathway ID (MetaCyc pathway identifier); (b) two genes 
should be classified into different reactions (MetaCyc reac-
tion identifier). (2) Co-expression: RNA-seq data were uti-
lized to identify co-expressed genes in each candidate clus-
ter based on two criteria : (a) at least a pair of genes were 
significant co-expressed (P value ≤ 0.05, under Pearson’s 
product-moment correlation); (b) at least one pair’s PCC 
(Pearson’s correlation coefficient, Usadel et al. 2009) over 
the 90th percentile of the distribution of the genome-wide 
metabolic gene pairs’ PCC (Supplementary Dataset S1, Sup-
plementary Fig. S1). In-house python scripts were used in 
selection of the MGCs based on the results from the Plant-
ClusterFinder v1.0 pipeline.

Metabolic gene cluster re‑detection

PlantiSMASH (http://plant​ismas​h.secon​darym​etabo​lites​
.org/) is an online computational tool for MGC prediction 
(Kautsar et al. 2017). Genome sequence and annotation files 
in GFF3 format were acquired as inputs. The default param-
eters were applied in gene cluster re-detection in the K326 
genome.

TPS and CYP gene investigation and subfamily 
assignment

Members of the TPS (PF01397, PF03936) and CYP 
(PF00067) gene families were identified by InterProScan 
v5 (Zdobnov and Apweiler 2001). CYP categories have 
been provided by the SGN annotation file. For TPS subfam-
ily assignment, we downloaded the protein sequences from 
dicots with known subfamilies (Boutanaev et al. 2015), and 
the phylogenetic tree was constructed via FastTree (Price 
et al. 2009) based on protein sequence alignments generated 
by MAFFT v7.305b (Katoh et al. 2002) using the default 
settings.

https://dpb.carnegiescience.edu/labs/rhee-lab/software
https://dpb.carnegiescience.edu/labs/rhee-lab/software
http://plantismash.secondarymetabolites.org/
http://plantismash.secondarymetabolites.org/
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TPS and CYP gene pair distribution analysis

As described by Boutanaev et al. (2015), we used the ran-
dom number generator based on in-house perl scripts to sim-
ulate random distribution of gene pairs on the whole-genome 
scale. The average count of 1000 computer simulation was 
compared with the observed distributions of TPS&CYP gene 
pairs with a distance less than or equal to 30, 50, 100, 150 or 
200 kb from each other (Supplementary Fig. S2), since these 

intervals were considered close proximity for gene pairs to 
be associated (Boutanaev et al. 2015). To test whether the 
TPS&CYP pairing’s near locating happened by chance, χ2 
tests were applied across all these five intervals to compare 
the observed and random count of TPS/CYP pairs by custom 
R scripts, and followed with the calculation process:

�
2 =

{30,50,100,150,200}
∑

interval

(observed − random)2

random
(df = 4).

Fig. 2   The pipeline for prediction of metabolic gene clusters. Protein 
sequences were processed by E2P2 to identify putative enzymes that 
were then assigned to reactions using the pathway tools (Karpe et al. 
2011) and to predict pathways in tobacco, and finally the files for 
the entire database library were exported under the name of “Tobac-
cocyc”, which was used as the input file for the PlantClusterFinder 
pipeline. The output of the pipeline was then screened by three fil-
ters, i.e., optimal gap size, co-pathway annotation and co-expression 

annotation, to generate a set of high-confidence MGCs. For the co-
expression filter, we used RNA-seq data from a pathogen infection 
experiment and a previously published experiment (SRP101432), 
and calculated Pearson’s correlation coefficient (PCC) for all the 
metabolic gene pairs to select MGCs using the 90th percentile PCC 
as the threshold. After re-detection using plantiSMASH, we obtained 
MGCs with TPS&CYP gene pairs that were involved in the biosyn-
thesis of capsidiol
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Identification of orthogroups

With the protein sequence files from N. tabacum cultivar 
K326, N. sylvestris, N. tomentosiformis, N. attenuate, N. 
tabacum cultivar TN90, N. tabacum cultivar BX, C. annuum 
(downloaded from Sol Genomics Network), orthogroups 
were identified among these species using OrthoFinder 
v2.2.7 (Emms and Kelly 2015) with the default settings 
(BLASTP E value ≤ 1e−5 and MCL inflation parameter of 
1.5).

Results

Genome‑wide prediction of metabolic gene clusters 
in common tobacco

Following the prediction pipeline shown in Fig. 2 (for 
details, see “Materials and methods”), we created a path-
way database with 11,789 enzymes, 4408 reactions and 
557 metabolic pathways for the tobacco cultivar K326, 
which was then used in MGC annotation and determina-
tion. Compared with the dataset of N. tabacum cultivar 
TN90 on the plant metabolic network (https​://plant​cyc.
org/datab​ases/ntaba​cumtn​90cyc​/2.0), which includes 9155 
enzymes, 3146 reactions and 506 metabolic pathways, the 
main difference may come from the features of the genome 
and the assembly annotation quality. As a result, 1181 
MGCs involving 9071 genes were predicted, with 4884 
being metabolic genes (Table 1). The predicted MGCs had 
a physical size ranging from 4 to 1161 kb, with a median 
size of ~ 163 kb (Fig. 3a). Of the MGCs, 13% contained 
seven to eight genes which represented the largest portion 
of the identified putative MGCs (Fig. 3c), with four to 
five being metabolic genes (Fig. 3b). The predicted size 
and number of genes of the tobacco MGCs are consistent 
with those of previously experimentally verified MGCs 
in other plants (33–284 kb with 4–18 genes) (Schlapfer 

et al. 2017). Out of the 1181 predicted MGCs, 116 with 
hallmarks of the mainstream signature genes were classi-
fied as specialized MGCs (Fig. 3f, Table 1). Of the 116 
specialized MGCs, 32 contained 1–4 tailoring enzymes, 
mainly CYP450. The predominant products of these pre-
dicted specialized MGCs are alkaloid, phenylpropanoid 
and terpenoid (Fig.  3e, Supplementary Table  S2). To 
verify the prediction results, we used the web-based tool 
plantiSMASH (Kautsar et al. 2017) with the same tobacco 
assembly, and in total, 51 MGCs were predicted and 10 
were assigned to the terpene class. Forty-one out of the 
51 were repeatedly detected, and 5 were assigned to the 
terpene class (Supplementary Dataset S2).

Co-expression analysis, a powerful strategy for screen-
ing genuine gene sets involved in the production of a 
specialized metabolite, was performed as one of the pre-
requisites for inferring high-confidence MGCs. We used 
both the P value and PCC threshold in determining sig-
nificant co-expression patterns (for details, see “Materi-
als and methods”). Integrating the co-expression analysis 
with metabolic pathway annotation, seven MGCs stood out 
and were characterized as the high-confidence MGCs for 
specialized metabolite biosynthesis (Supplementary Fig. 
S3). Among the seven, two were re-detected by plantiS-
MASH and both were assigned to the terpene class. The 
physical sizes of these seven high-confidence MGCs were 
from 28 kb to 496 kb, with an average of ~ 249 kb (Sup-
plementary Fig. S3). According to the pathway annotation, 
these seven clusters were involved in sucrose degradation 
V (sucrose α-glucosidase, PWY66-373), phenylethanol 
biosynthesis (PWY-5751), methyl indole-3-acetate inter-
conversion (PWY-6303) or capsidiol biosynthesis (PWY-
2921). Referring to the signature enzyme types, three out 
of the seven were classified as the TPS type. All three 
TPS-type MGCs were predicted to be involved in capsidiol 
biosynthesis. Signature and tailoring genes in all of the 
three MGCs were co-up-regulated in the pathogen-infected 
samples.

Table 1   Overview of the 
predicted metabolic gene 
clusters in tobacco

Numbers of the total MGCs (column ‘MGCs’), all and metabolic genes involved (column ‘Total gene’ and 
‘Metabolic gene’), specialized MGCs (column ‘Specialized’), MGCs involved in terpenoid biosynthesis 
(column ‘Terpenoid’), MGCs re-detected by plantiSMASH (column ‘plantiSMASH’) are presented. Four 
screening conditions were investigated, notes are as followed. Notes: “gap-size(5)”, MGCs under optimal 
gap-size 5, which was estimated by software PlantClusterFinder; “co-expP. ”, MGCs with at least one gene 
pair’s Pearson correlation test P value ≤ 0.05; “co-expPCC”, MGCs with at least one gene pair’s Pear-
son correlation coefficients (PCC) ≥ PCC threshold (90th percentile); “co-pwy & expPCC”, MGCs with at 
least one gene pair co-pathway annotated and co-expression pattern over the PCC threshold

Filters MGCs Total gene Metabolic gene Specialized Terpenoid plantiSMASH

Gap-size (5) 1181 9071 4884 116 34 41
Co-expP. 866 7111 3780 85 27 30
Co-expPCC 454 4117 2176 50 15 20
Co-pwy&expPCC 11 80 57 7 3 2

https://plantcyc.org/databases/ntabacumtn90cyc/2.0
https://plantcyc.org/databases/ntabacumtn90cyc/2.0
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Diversification and conservation of metabolic gene 
clusters in Solanaceae

To investigate the MGC diversification and conservation in 
the Solanaceae family, we compared tobacco MGCs identi-
fied here with those previously identified in tomato (Sola-
num lycopersicum; 710 MGCs) and potato (Solanum tubero-
sum; 379 MGCs) (Schlapfer et al. 2017; Supplementary 
Table S3). Although tobacco has a much larger genome size 
than both tomato and potato, and is well known for its abun-
dance of secondary metabolites; the number of the predicted 
MGCs (under optimal gap size) in these three species has 
no significant difference. However, the physical size of the 
clusters in tobacco (median size: 163 kb) was much larger 
than that of the other two species (potato: 35 kb; tomato: 
61 kb); Nevertheless, the MGCs from the three species con-
tained a similar number of genes (Fig. 3d). We found 36 
and 74 specialized MGCs in potato and tomato, respectively 
(Fig. 3f, Supplementary Table S4) based on the presence of 
signature enzymes in the MGCs. These numbers were lower 
than the 116 identified in tobacco. Theoretically, MGCs with 
at least two distinct reaction IDs or enzyme IDs in com-
mon can be considered to be conserved. Based on this crite-
rion, five conserved MGCs were found in the three species 
and they were further supported by co-expression analysis. 
Interestingly, two MGCs (SCF_0003714_150336_234000, 
SCF_0004447_17210_141828) with conserved reactions 
were involved in the biosynthesis of morphine (PWY-5270) 
which has only been reported in Papaver somniferum to date 
(Caspi et al. 2018).

To further characterize the conservation of the MGCs 
in tobacco, we investigated the presence of a well-char-
acterized potato and tomato gene cluster in tobacco. 
The cluster is involved in biosynthesis of steroidal gly-
coalkaloids (potato: α-solanine/α-chaconine, tomato: 
α-tomatine) (Itkin et al. 2013). α-Solanine and α-tomatine 
are a kind of steroidal glycoalkaloids and well known 
for their anti-nutritional substances in solanaceous food 
plants (tomato, potato and eggplant). In both tomato and 
potato, two copies of the gene cluster were found (Itkin 
et al. 2013). We also identified two copies of MGCs anno-
tated to be related to the α-solanine pathway (PWY-5666), 
one located on the scaffold Nitab 4.5_0001073 spanning 
a 533.5-kb genomic region with 10 genes, the other span-
ning a 59.6-kb region with three genes on the scaffold 
Nitab 4.5_0000170. Based on the OrthoFinder pipeline 
(Emms and Kelly 2015), we identified six orthologs in 
the two tobacco MGCs encoding the key enzymes of 
the α-solanine biosynthesis pathway (Supplementary 
Fig. S4). α-Solanine biosynthesis requires genes encod-
ing uridine 5′-diphosphate (UDP)-glycosyltransferases 
to decorate the steroidal alkaloid skeleton with various 
sugar moieties (Itkin et al. 2013). GAME1, GAME2 in 

tomato and SGT1, SGT3 in potato are the genes encoding 
glycosyltransferase, and their homologs in tobacco were 
Nitab 4.5_0001073g0030, Nitab 4.5_0000170g0490, 
Nitab 4.5_0001073g0020, and Nitab 4.5_0000170g0500, 
respectively. Genes encoding CYP450 and dioxyge-
nase are also required for α-solanine biosynthesis, and 
they were found in the MGC located on scaffold Nitab 
4.5_0001073. These genes were co-expressed (P value 
≤ 0.05) with the four aforementioned genes encoding 
glycosyltransferase (Supplementary Dataset S3). Thus, 
equipped with all genes necessary for α-solanine synthe-
sis in the same MGC and co-expressed with genes encod-
ing glycosyltransferases, the MGC on the scaffold Nitab 
4.5_0001073 seemed to be a genuine and complete gene 
cluster for α-solanine biosynthesis in tobacco.

Non‑random distribution of TPS and CYP gene pairs 
for terpenoid biosynthesis in Nicotiana genomes

TPS&CYP pairing’s non-random distribution offers the 
potential for an associated TPS&CYP gene pairs’ discov-
ery, which often refers to the biosynthesis of terpenoids in a 
gene-clustering pattern (Field and Osbourn 2008; Matsuba 
et al. 2013; Boutanaev et al. 2015). Members of the terpene 
synthase and cytochrome P450 gene families were identi-
fied in the genomes of N. tabacum and three wild tobacco 
species (N. sylvestris, N. tomentosiformis, N. attenuata) by 
InterProScan v5 (Zdobnov and Apweiler 2001). Our results 
showed that in N. tabacum, N. sylvestris and N. attenuata, 
the TPS&CYP combination located in close proximity was 
significantly different from a random occurrence (χ2 test, P 
value ≤ 0.01; Supplementary Table S5), which indicated that 
the association between TPS and CYP genes in the genomes 
was likely to function collaboratively.

To better understand the pattern of TPS and CYP pairing 
in the whole genome of tobacco and the identified MGCs, 
we classified the 160 identified TPS genes into specific sub-
families (Chen et al. 2011) (Supplementary Fig. S5, Sup-
plementary Dataset S4), and the 798 identified CYP genes 
into clans (categories provided by the genome annotation 
files). Chen et al. (2011) assigned TPS proteins from seven 
plant species into seven subfamilies based on their phy-
logenic relationships and functions of well-characterized 
TPS, with the subfamilies of TPS-a and TPS-b regarded as 
angiosperm-specific (Chen et al. 2011). We found that TPS-a 
was the biggest subfamily in common tobacco, followed by 
TPS-b (Supplementary Fig. S5). These two subfamilies had 
62 TPS genes distributed in 34 MGCs (Supplementary Fig. 
S5, TPS genes are labeled the color pink). TPS in 9 of the 
34 MGCs were partnered with CYP as a tailoring enzyme 
(Supplementary Fig. S5). In these nine MGCs, the distance 
between TPS and CYP ranged from 2.76 kb to 293.35 kb. 
TPS-a subfamily genes were more likely to pair with the 
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CYP71 clan genes (5/9), followed by TPS-e/f and CYP71 
pairing (3/9) (Supplementary Fig. S5). These results are 
consistent with a previous finding that TPS genes were pre-
dominantly in combination with the CYP71 clan genes in 
both eudicots and monocots (Boutanaev et al. 2015).

We also analyzed the conservation of the paired TPS and 
CYP found in the nine MGCs in the three wild Nicotiana 
species based on orthologous information. TPS&CYP pairs 
found in five MGCs of common tobacco were found to be 
conserved in at least one of the three wild tobacco species. 
The distance between the nearest TPS and CYP coding 
genes were all ≤ 300 kb, except for those found on chromo-
some 1 of N. attenuate (Supplementary Table S6).

The metabolic gene clusters for capsidiol 
biosynthesis in tobacco

T h r e e  ( S C F _ 0 0 1 0 6 6 2 _ 1 6 3 4 2 _ 4 4 3 9 5 , 
S C F _ 0 0 0 2 7 1 7 _ 7 3 7 8 6 _ 2 9 3 3 8 2  a n d 
SCF_0001461_22519_518611) of the seven high-confidence 
MGCs with hallmarks of the mainstream signature genes 
were identified as being involved in capsidiol biosynthesis 
(Fig. 4a). Expression of EAH (Nitab 4.5_0010662g0040) 
of the MGC SCF_0010662_16342_44395 could not be 
detected in any analyzed RNA-seq samples, and this MGC 
was then excluded for further analysis. The remaining 
two MGCs were both confirmed by plantiSMASH. MGC 
SCF_0001461_22519_518611 had 13 genes, includ-
ing two EAH (EAH1: Nitab 4.5_0001461g0070, EAH2: 
Nitab 4.5_0001461g0130), four EAS (EAS1: Nitab 
4.5_0001461g0050, EAS2: Nitab 4.5_0001461g0140, EAS3: 
Nitab 4.5_0001461g0120, EAS4: Nitab 4.5_0001461g0100), 
while MGC SCF_0002717_73786_293382 had eight genes, 
including one EAH (EAH3: Nitab 4.5_0002717g0030) and 
five EAS (EAS5: Nitab 4.5_0002717g0060, EAS6: Nitab 
4.5_0002717g0070, EAS7: Nitab 4.5_0002717g0050, 
EAS8: Nitab 4.5_0002717g0090 ,  EAS9: Nitab 
4.5_0002717g0100). The genomic regions flanking each 
MGC were also searched for the presence of gene(s) 

encoding metabolic enzyme(s), and the result was nega-
tive. EAH1, EAH2 and EAH3 contain 504, 309 and 503 
amino acids, respectively, matching with the previous 
identified EAH (504 aa, UniProt: Q94FM7) in both length 
and sequence similarity (Supplementary Fig. S6; EAH1: 
identity = 94.0%; EAH2: identity = 82.6%; EAH3: iden-
tity = 86.7%), even though EAH2 was shorter. Similarly, 
comparing with the known EAS (548 aa, UniProt: Q40577), 
two of the seven EAS proteins (EAS1 and EAS7) had the 
same number of amino acids and showed very high simi-
larity (Supplementary Fig. S6; EAS1: identity = 94.3%; 
EAS7: identity = 96.2%), while the others were shorter. 
Complete information about these core members are pre-
sented in Table  2. SCF_0002717_73786_293382 and 
SCF_0001461_22519_518611 each contained a pair 
of full length EAS and EAH genes (EAS7 and EAH3 for 
SCF_0002717_73786_293382 and EAS1 and EAH1 for 
SCF_0001461_22519_518611), so both MGCs are thus 
supposed to be functional for capsidiol biosynthesis. Co-
expression of the paired EAS and EAH genes would sug-
gest a functional MGC. We, therefore, investigated the 
expression levels of the genes in each MGC and their co-
expression patterns. Not surprisingly, EAS1 and EAH1 were 
co-expressed in SCF_0001461_22519_518611 (Pearson 
correlation test PCC = 0.99 and P value = 0). For MGC 
SCF_0002717_73786_293382, two pairs of EAS and EAH 
genes (EAS7 & EAH3 and EAS6 & EAH3, PCC = 0.67, P 
value = 3.6e−4 and PCC = 0.76, P value = 2.0e−5, respec-
tively) were also co-expressed (Fig. 4b, c).

Evolutionary conservation of the metabolic gene 
clusters for capsidiol biosynthesis

We then did synteny analysis for the MGCs involved in 
capsidiol biosynthesis to investigate whether they are con-
served in the wild Nicotiana species. N. sylvestris (female) 
and N. tomentosiformis (male) are the ancestors of com-
mon tobacco (Sierro et al. 2013, 2014). For the genes of 
the MGC SCF_0001461_22519_518611, the N. tomentosi-
formis ortholog of EAS1 was found in a 33.6-kb synteny 
region on scaffold ASAG01017751.1, and N. sylvestris 
orthologs of EAS1 and EAH1 were found in a 130.0 kb syn-
teny region on scaffold KD972877 (Supplementary Fig. S7). 
To clarify the origin of the capsidiol biosynthesis MGCs 
in common tobacco, we aligned the sequence of N. taba-
cum scaffolds Nitab 4.5_0001461 and Nitab 4.5_0002717 
with the N. tomentosiformis scaffold ASAG01017751.1 
and N. sylvestris scaffold KD97287. The results showed 
that Nitab 4.5_0002717 was more likely derived from 
the T genome, although the origin of Nitab 4.5_0001461 
could not be inferred. However, Edwards et al. (2017) who 
released the N. tabacum assembly claimed that the chromo-
some Nt13 where scaffold Nitab 4.5_0001461 is located was 

Fig. 3   The properties of the predicted metabolic gene clusters in 
tobacco. a Distribution of the physical size of the identified MGCs 
after each filtering step. Numbers above the X-axis indicate the 
median physical size of MGCs. b Distribution of the proportions of 
metabolic gene number within the identified MGCs after each filter-
ing step. c Distribution of the density of the total number of genes 
within the identified MGCs after each filtering step. d Distribution of 
the density of the total number of genes within the clusters identified 
based on the filter of optimal gap size in three species (potato, tomato 
and tobacco). e Category of the identified specialized MGCs with the 
hallmark signature genes in tobacco. For each metabolite type, MGCs 
were separated into two groups, with or without gene(s) encoding tai-
loring enzyme(s). f Distribution of the MGCs with different type of 
metabolites in three species (potato, tomato and tobacco), based on 
optimal gap size
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from the T genome. Therefore, N. tomentosiformis seemed 
to be the donor of both capsidiol biosynthesis MGCs in 
N. tabacum. In the genome of N. attenuata, another wild 
tobacco species, two synteny blocks (8.8 kb and 49.1 Mb) of 
SCF_0001461_22519_518611 were found, each contained 
a pair of EAS and EAH orthologs (Supplementary Fig. S7). 
Nevertheless, the big synteny block seemed less convincing 

regarding its length, and the small one was more similar to 
the MGC on scaffold Nitab 4.5_0002717 based on sequence 
alignment. We also analyzed SCF_0001461_22519_518611 
from cultivar K326 in two other sequences of N. tabacum 
cultivars (TN90 and BX) (Sierro et al. 2014). Each cultivar 
contained a block (135.5 kb in BX and 238.7 kb in TN90) 
similar to part of the MGC found in K326 (Supplementary 

a

b c

Fig. 4   Functional metabolic gene clusters involved in capsidiol 
biosynthesis. a Genomic structures of the three MGCs involved 
in capsidiol biosynthesis. Dashed lines indicate the orthologous 
genes identified by the OrthoFinder pipeline. Due to expression of 
EAH (Nitab 4.5_0010662g0040) could not be detected in any ana-

lyzed RNA-seq samples, and MGC SCF_0010662_16342_44395 
was excluded for further analysis. Genes encoding EAS and EAH 
showed excellent co-expression patterns in each of the two MGCs. b 
SCF_0001461_22519_518611. c SCF_0002717_73786_293382
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Fig. S7). Both synteny blocks from BX and TN90 also had a 
higher sequence similarity with scaffold Nitab 4.5_0002717 
from K326.

Capsidiol biogenesis has been well studied in pep-
per which also belongs to Solanaceae family (Lee et al. 
2017). It has been demonstrated that capsidiol is gener-
ated by gene clusters in pepper. Besides pepper, common 
tobacco is the other plant which could produce capsidiol. 
Therefore, we further extended the synteny analysis to C. 
annuum. By comparing the two MGCs which are respon-
sible for capsidiol biosynthesis in tobacco to that of pep-
per, we found that the genes and their organization in 
SCF_0001461_22519_518611 were mostly conserved 
in C. annuum although the length (543.9 kb) of the scaf-
fold Nitab 4.5_0001461 harboring the tobacco MGC was 
much shorter than the C. annuum gene cluster (2.35 Mb) 
(Fig. 5a). To know whether the synteny region could be 
further extended in tobacco, we searched for scaffolds 
containing EAS and/or EAH genes and adjacency to Nitab 
4.5_0001461 based on their chromosome and coordinate 
information (Edwards et al. 2017). In doing so, we found a 
scaffold, Nitab 4.5_0004794, which is only 130.8 kb away 
from Nitab 4.5_0001461 on chromosome 13 (Nt13) and 
contains two EAS genes orthologous to CA12g05180, one 
of the genes from the gene cluster responsible for capsidiol 
biosynthesis in C. annuum; however, no companion EAH 
gene was found in this scaffold (Fig. 5a).

We analyzed the responses of EAS and EAH genes upon 
pathogen infection. Of the 27 EAS genes, 10 were up-regu-
lated in a variable level, and 5 of them were located on the 3 
gene clusters related to capsidiol biosynthesis. In each clus-
ter, a companion EAH gene was also up-regulated. The other 
five up-regulated EAS genes were located on five different 
scaffolds (Nitab 4.5_0000414, Nitab 4.5_0004794, Nitab 
4.5_0008226, Nitab 4.5_0013007 and Nitab 4.5_0016435) 

and without a companion EAH gene. Seventeen (6 located 
on the capsidiol biosynthesis MGCs) of the 27 EAS genes 
showed almost no expression in all samples (Fig.  5b). 
We also found three up-regulated EAH genes without a 
companion EAS gene on three different scaffolds (Nitab 
4.5_0020114, Nitab 4.5_0006692, Nitab 4.5_0007566).

Discussion

Here, we performed a genome-wide study of metabolic 
gene clusters in common tobacco, and identified 1181 can-
didates, with 34 potentially involved in terpenoid biosynthe-
sis (Table 1, Supplementary Dataset S3). When integrated 
with transcriptomic and metabolic pathway annotation 
analyses, we found that two MGCs were involved in cap-
sidiol biosynthesis, and their patterns were conserved in N. 
sylvestris, N. tomentosiformis and N. attenuate (Fig. 4a, Sup-
plementary Fig. S7). Sesquiterpenoid phytoalexin capsidiol 
was confirmed to be an effective resistance compound in 
Nicotiana species (Bailey et al. 1975; Li et al. 2015; Jassbi 
et al. 2017), but the metabolite assembly mechanism for the 
end-product synthesis has still been unclear. This study dem-
onstrates that the well-known phytoalexins in tobacco can 
arise from operon-like gene clusters, which are character-
ized as a genomic pattern benefit for rapid stress response, 
gene co-regulation, co-function and co-heredity (Boycheva 
et al. 2014).

In recent years, the clustering of non-homologous and 
co-localized metabolic genes for biosynthesis of natural 
products or specialized metabolites in the plant genome has 
increasingly emerged as an interesting research topic. So far, 
more than 30 examples of specialized metabolic pathways in 
plants have been reported to be related to gene clusters (Boy-
cheva et al. 2014; Nutzmann et al. 2016; Guo et al. 2018). 

Table 2   Core members in 
metabolic gene clusters for 
capsidiol biosynthesis

Identity (%): results from BLASTP with known EAH (UniProt: Q94FM7) or EAS (UniProt: Q40577)

Cluster ID Gene ID In-house 
protein ID

Length of 
protein (aa)

Identity (%)

SCF_0001461_22519_518611 Nitab 4.5_0001461g0070 EAH1 504 94.048
Nitab 4.5_0001461g0130 EAH2 309 82.593

SCF_0002717_73786_293382 Nitab 4.5_0002717g0030 EAH3 503 86.667
SCF_0001461_22519_518611 Nitab 4.5_0001461g0050 EAS1 548 94.343

Nitab 4.5_0001461g0140 EAS2 129 84.328
Nitab 4.5_0001461g0120 EAS3 59 76.316
Nitab 4.5_0001461g0100 EAS4 292 87.854

SCF_0002717_73786_293382 Nitab 4.5_0002717g0060 EAS5 90 93.976
Nitab 4.5_0002717g0070 EAS6 230 69.534
Nitab 4.5_0002717g0050 EAS7 548 96.168
Nitab 4.5_0002717g0090 EAS8 206 68.571
Nitab 4.5_0002717g0100 EAS9 310 63.763
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The MGCs have a physical size ranging from ~ 33 kb to 
more than 300 kb, and consist of 3–18 genes (Nutzmann 
et al. 2016; Schlapfer et al. 2017). Even though it is abundant 
with bioactive natural products, tobacco has been absent in 
genome-wide investigation of MGCs.

Given the benefit of the availability of several state-of-
the-art in silico approaches for MGC detection, we predicted 
tobacco MGCs with a modified workflow based on the Plant-
ClusterFinder pipeline and uncovered a vast number of can-
didates (Fig. 2, Supplementary Dataset S3). While 82% of the 
MGC results based on plantiSMASH could be recovered by 

PlantClusterFinder, only 3.5% of MGCs detected by Plant-
ClusterFinder could be re-detected by plantiSMASH, suggest-
ing the candidates predicted by PlantClusterFinder require a 
further stringent filtering process. We set up filters based on 
our current knowledge of biosynthesis of metabolites and the 
expression pattern of MGCs to get 11 high-confidence MGCs 
from the original 1181 ones. Of these, seven MGCs with hall-
marks of signature genes were characterized for specialized 
metabolite biosynthesis (Supplementary Fig. S3). Among the 
filters, the two major ones were the co-expression threshold 
and co-pathway annotation. It is believed that the sufficient 

a

b

Fig. 5   Potential expansion of the EAS/EAH beyond the capsidiol 
metabolic gene clusters. a Expansion of the genes encoding EAS 
and EAH for capsidiol biosynthesis in tobacco and pepper. Col-
linearity relationships were established based on identification of 
orthologous genes by the OrthoFinder pipeline. For C. annuum, genes 
labeled with “*” were verified to be significantly highly induced in 
leaves after pathogen infection. b Expression patterns of the 27 
genes encoding EAS (EC: 4.2.3.61) and 9 genes encoding EAH (EC: 
1.14.13.119) in tobacco root and shoot based on the pathogen infec-
tion RNA-seq experiment. RNA-seq was done using 0, 4, 12, 24, 

48 and 72  h post-infection (hpi) samples. FPKM was used to rep-
resent the expression level. The labels of each gene in the first col-
umn were determined by the expression level; “Up” represents that 
the gene is up-regulated after infection, and “No” means the expres-
sion of the gene could not be detected in all analyzed samples, i.e., 
all FPKM of this gene are equal to 0. Genes appearing in the three 
detected capsidiol biosynthesis MGCs (SCF_0010662_16342_44395, 
SCF_0001461_22519_518611 and SCF_0002717_73786_293382) 
were boxed by dashed lines



Planta	

1 3

expression data from diverse treatments, developmental stages 
and tissues were the persuasive evidence for co-expression 
estimation, however condition-specific correlations caused by 
diverse samples were difficult to mask (Boycheva et al. 2014; 
Nutzmann et al. 2016; Schlapfer et al. 2017). Considering 
that the expression data in our study was not as rich as that 
of ATTED-II (a plant co-expression database) and due to the 
complexity and poor annotation of the tobacco genome, we 
applied the threshold of the 90th percentile PCC distribution 
of the genome-wide metabolic gene pairs, instead of the 99th 
one adopted by the PlantClusterFinder pipeline (Supplemen-
tary Fig. S1) where the co-expression threshold PCC was 
inferred by datasets from ATTED-II. Furthermore, because 
tobacco is very sensitive to treatment, the variances between 
replicates are hardly controllable, let alone between samples. 
After applying the 90th percentile of PCC, we still get a rela-
tively higher value of 0.662 compared with the 99th percen-
tile PCC 0.514 for Arabidopsis (Supplementary Fig. S1); and 
besides, it represented a very high statistical significance (P 
value ≤ 0.001) and a stringent cutoff for co-expression esti-
mation (Supplementary Dataset S1). The other filter we used 
was co-pathway annotation, which completely relies on the 
metabolism information provided by the current database. 
Since the vast majority of the metabolism potential of the 
plant kingdom still awaits discovery (Nutzmann et al. 2016), 
merely relying on the current knowledge of metabolism did 
limit the characterization of genuine MGCs, thus greater 
effort is required in future research. We defined a co-pathway 
MGC as having at least one gene pair with a distinct MetaCyc 
reaction ID and the same pathway ID. This filter would have 
discarded some genuine MGCs due to the largely unknown 
co-pathway information of a large number of metabolites in 
plants. Our filters thus probably have increased the prediction 
precision at a cost of losing genuine MGCs to some degree. 
As a result, the number of high-confidence MGCs predicted 
in this study could be underestimated.

In comparison with the MGCs predicted in potato and 
tomato, the number of total and specialized MGCs pre-
dicted in tobacco is not correlated with its genome size 
and abundant metabolites (Supplementary Table S3). The 
quality of gene annotation and genome assembly could 
be the two key factors affecting the prediction results. By 
applying the Core Eukaryotic Genes Mapping Approach 
(Parra et  al. 2007), which estimates the completeness 
of genome annotation, to the tobacco genome we used, 
tobacco appears to have a complete CEGMA score ~ 85% 
and a partial CEGMA score ~ 98%, both well over the 
threshold for building the high-quality metabolic pathway 
database. Thus, it seems the genome assembly quality 
would be the reason to explain the low number of MGCs 
predicted in tobacco. The tobacco assembly we used here 
is ~ 4.5 Gb, and has only 2% assembly covered by scaf-
folds with more than 50 genes, which is far away from the 

criterion (50%) suggested by Schlapfer et al. (2017) for 
performing MGC prediction. To be qualified as an MGC, 
a scaffold should contain at least three genes. In tobacco, 
there is only 57% assembly covered by scaffolds with three 
or more genes, suggesting that 43% assembly was not used 
in the prediction (Supplementary Table S3). In addition, 
a vast majority of the identified MGCs were annotated as 
being a partial clustering of metabolic pathways, though 
whether they were actually partial clustering or subjected 
to the assembly quality deserves further investigation. To 
conclude, prediction of MGCs in tobacco would be sig-
nificantly enhanced by improving its genome assembly.

While metabolites are often restricted to specific taxon 
lineages, comparative genomic analysis among species 
that share a relative relationship in evolution could still 
uncover conserved MGCs. In our study, an MGC annotated 
as involved in the α-solanine biosynthesis pathway exhib-
ited conserved synteny with the α-solanine/α-tomatine gene 
clusters reported in potato and tomato. In addition, the co-
expression pattern of the core component genes was vali-
dated by transcriptome analysis (Supplementary Fig. S4). 
We also discovered the partial clustering of the morphine 
biosynthesis pathway in tobacco, potato and tomato, and 
found it to be the only conserved convincing MGC shared 
by the three plant species. Though morphine biosynthesis 
has only been reported in P. somniferum, the partial clus-
tering of the pathway found in the Solanaceae family may 
contribute to the production of morphine precursors or other 
forms of morphine in these species, a topic deserving fur-
ther study. Furthermore, five out of the nine MGCs with 
TPS&CYP pairing, including the two key capsidiol biosyn-
thesis MGCs, exhibited conserved synteny with the three 
wild Nicotiana species (Supplementary Table S6). In both 
the paternal and maternal genomes of common tobacco, we 
found reliable synteny blocks of MGCs for capsidiol bio-
synthesis, and sequence analysis suggested that these two 
tobacco MGCs were likely to originate from N. tomentosi-
formis. Previous studies on repetitive DNA sequence distri-
bution and sequence reads mapping demonstrated a reduced 
contribution of N. tomentosiformis to the tobacco genome 
(Sierro et al. 2014; Edwards et al. 2017). The well-preserved 
clustering genomic structure for capsidiol biosynthesis in 
tobacco and its wild species highlights the significance of 
capsidiol in the evolution of the Nicotiana species. Recently, 
the gene clustering pattern in a species-specific manner for 
capsidiol biosynthesis has been reported in pepper (Lee 
et al. 2017). Based on the collinearity relationship analysis 
between tobacco and pepper, we discovered potential expan-
sion of EAS/EAH beyond the capsidiol biosynthesis MGC 
in pepper (Fig. 5a). However, constrained by the assembly 
quality of tobacco, whether the two tobacco scaffolds car-
rying the pathogen-inducible EAS or EAH are adjacent to 
each other in the genomic block corresponding to the gene 
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cluster in pepper is still uncertain, which would compromise 
our conclusion about the expansion of EAS/EAH beyond the 
capsidiol biosynthesis MGC in pepper.

Phytoalexins acting as active weapons against pathogen 
infection in plants have drawn considerable attention. Our 
study applied a modified plant cluster prediction strategy 
to perform a large-scale identification of MGCs in com-
mon tobacco. By integrating multiple data analyses (tran-
scriptome and metabolic pathway data sources), two MGCs 
involved in capsidiol biosynthesis were achieved. As demon-
strated in this work, the well-known phytotoxin capsidiol in 
tobacco was found to be functioning in a clustering pattern, 
and evolved in a conserved manner among different Nico-
tiana species. The assembly of metabolic pathways within a 
clustering pattern like an operon is believed to be beneficial 
for rapid stress response, gene co-regulation, co-function and 
co-heredity. Our analyses shed light on MGCs’ detection in 
common tobacco with a complex genome, where customized 
and modified analyses are required. The pipeline raised here 
could also be used in other plants with complex genomes, 
such as barley, oilseed rape and cotton. Although our pipe-
line still has some limitations, we firmly believe that detec-
tion of functional MGCs can provide a novel perspective for 
the investigation of the clustered metabolic pathway, and 
may greatly contribute to highly efficient genome editing for 
improving economic traits, especially in disease-resistance 
breeding.
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